If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-195x+7200=0
a = 1; b = -195; c = +7200;
Δ = b2-4ac
Δ = -1952-4·1·7200
Δ = 9225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9225}=\sqrt{225*41}=\sqrt{225}*\sqrt{41}=15\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-195)-15\sqrt{41}}{2*1}=\frac{195-15\sqrt{41}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-195)+15\sqrt{41}}{2*1}=\frac{195+15\sqrt{41}}{2} $
| 6x-5=13x | | -21=v3–18 | | 2f+6=22 | | 15+5b=55 | | 20+s=26 | | -2b=7−3b | | 5x+66=x2 | | f/6-6=-1 | | 5w+10=2+7w | | 9^2x=27^5x+1 | | 5+f=14.7 | | 12-1/5*r=2*r+1 | | 2^6x+5=8^3x+2 | | x+4=3/4x | | 36-(x-8)=0,85-20 | | 12-1/5*r=2r+1 | | 22x=102 | | 7+35x=28+8 | | p5/9=-31/18 | | 3(f−63)=69 | | -(x+)=16 | | -56=c+8 | | 4y+50=5y+40 | | 10s-9s+s-2s+3s=12 | | 2^-3x=32 | | 96=8(h+9) | | 9x+5=3(5x-3) | | 135=25x | | 6x-22=-8 | | (-8)-2y=4 | | -12y=60.75 | | 0.5k-12=8 |